pennsylvanine and pennsylvanamine, two new dimeric isoquinoline alkalords ${ }^{1}$

> M. Shamma and J.L. Moniot,
> Department of Chemistry, The Pennsylvania State University,
> University Park, Pennsylvania 16802
(Received in USA 21 March 1974; received in UK for publication 20 May 1974)

The in vivo tumor inhibitory activity of thalicarpine (3) ${ }^{2,3}$ now chosen for clinical trial, prompts us to report the characterization of two new potential tumor inhibitors pennsylvanine (1) and pennsylvanamine (2), phenolic analogs of $\underline{3}$, obtained from the giant meadow rue, Thalictrum polygamum Muh1. (Ranunculaceae), which is endemic throughout Pennsylvania.

Pennsylvanine (1) , $\mathrm{C}_{4}{ }_{0} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{8}, \quad[\alpha]_{\mathrm{D}}^{24}+131^{0} \quad(\mathrm{c}=0.7, \mathrm{MeOH})$, a major alkaloid of the plant, was obtained as crystals mp $112-113^{0}$ (ether). The uv spectrum, $\lambda_{\max }^{\mathrm{MeOH}} 284,304$ and 320 sh nm (10 g e 4.26 , 4.18 and 4.05), was reminiscent of that for thalicarpine (3) and showed both a hyperchromic effect and a bathochromic shift to $\lambda_{\max }^{\mathrm{MeOH}-\mathrm{OH}^{-}} 284,311$ and $320 \mathrm{sh} \mathrm{nm}(\log \mathrm{e} 4.32,4.29$ and 4.15). The major fragments in the mass spectrum of $1, m / e 682\left(M^{+}\right), 476\left(M^{+}-x\right), 340\left(M^{+}-y\right), 324\left(M^{+}-z\right)$, and $206\left(\mathrm{x}^{+}\right.$, base), were identical with those in the spectrum of the related monophenolic aporphinebenzylisoquinoline dimer thalidoxine (4). 4^{4} Diazomethane o-methylation of $\underline{1}$ afforded (+)-thalicarpine (3). Assignment of the phenolic function of pennsylvanine (1) to $C-5$ " in the benzyl ring was confirmed by analysis of the nmr data for pennsylvanine acetate (5), $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{9}$, mp $137-138^{0}$ (ether), obtained by treatment of 1 with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine. Whereas acetylation of the $\mathrm{C}-4$ " phenol in thalidoxine (4) gave rise to a $0.1-0.2 \mathrm{ppm}$ upfield shift of the $\mathrm{C}-8$ aporphine aromatic proton due to shielding by the, acetate carbonyl, ${ }^{5}$ no such upfield shift was observable in the spectrum of 5 .

The second alkaloid, pennsylvanamine (2), $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8},[\alpha]_{\mathrm{D}}^{25}=+119^{0}$ (c $=0.94$, MeOH), was obtained as fine needles, mp $128-129^{\circ}$ (acetone-ether), or prisms, mp 107-1080 (ether). The uv spectrum, $\lambda_{\max }^{\text {MeOH }} 276 \mathrm{sh}, 284,297 \mathrm{sh}$ and $312 \mathrm{sh} \operatorname{nm}(\log \varepsilon 4.07,4.17,4.11$ and 4.06), showed a pronounced bathochromic shift to $\lambda_{\max }^{\mathrm{MeOH}-\mathrm{OH}^{-}} 292,315$ and $352 \mathrm{~nm}(\log \in 4.10,3.98$ and 3.82$)$, suggestive of a C-1 phenolic aporphine. ${ }^{6}$ The mass spectrum of pennsylvanamine (2), m/e $668\left(M^{+}\right), 462\left(M^{+}-x\right), 326$ $\left(M^{+}-y\right), 325\left(M^{+}-y-H\right), 309\left(M^{+}-z-H\right)$ and $206\left(x^{+}\right.$, base), indicated an aporphine-benzylisoquinoline dimer with a phenolic hydroxyl on the benzyl ring and another phenolic function on the aporphine. The aporphine phenol must be at $C-1$ because of the absence of a high field methoxyl signal near $\delta 3.70$ in the nmr spectrum. ${ }^{4}$
Table 1. NMR Spectral Data for Phenolic Analogs of Thalicarpine and their Acetate Derivatives (8)

Thalictropine (7)	N-Methyls		Methoxyl Groups							Aromatic Protons							Acetate Methyl		
			C-7 ${ }^{\text { }}$	C-1	C-5"	C-4"	c-6'	C-2	C-10	c-8'						C-11	$\mathrm{C}-1$		$\underline{C-7}$
	2.47	2.50	3.58	-	3.78	3.78	3.82	3.88	3.92	6.20	6.55	6.55	6.55	6.59	6.67	8.18	-	-	-
Thalictropine acetate (8)	2.45	2.47	3.58	-	3.78	3.78	3.82	3.84	3.92	6.18	6.50	6.53	6.55	6.60	6.63	7.60	2.34	-	-
Thalldoxine (4)	2.47	2.48	3.57	3.70	3.75	-	3.78	3.88	3.90	6.23	6.50	6.50	6.50	6.57	6.77	8.15	-	-	-
Thalidoxine acetate (9)	2.57	2.61	3.54	3.67	3.70	-	3.84	3.85	3.90	6.13	6.40	6.54	6.54	6.60	6.87	8.14	-	2.25	-
Pennsylvanine (1)	2.46	2.50	3.58	3.71	-	3.79	3.82	3.90	3.92	6.22	6.52	6.56	6.59	6.62	6.76	8.18	-	-	-
Pennsylvanine acetate (5)	2.50	2.53	3.58	3.70	-	3.71	3.83	3.88	3.91	6.23	6.51	6.57	6.61	6.63	6.87	8.20	-	2.29	-
Thalictrogamine (12)	2.49	2.52	-	-	3.79	3.83	3.83	3.92	3.96	6.40	6.53	6.58	6.58	6.58	6.77	8.18	-	-	-
Thalictrogamine diacetate (13)	2.49	2.51	-	-	3.80	3.80	3.76	3.84	3.91	6.43	6.51	6.53	6.62	6.62	6.66	7.60	2.34	-	2.19
Pennsylvanamine (2)	2.47	2.53	3.60	-	-	3.80	3.83	3.92	3.94	6.25	6.55	6.55	6.58	6.58	6.80	8.20	-	-	
Pennsylvanamine	2.50	2.52	3.59	-	-	3.70	3.83	3.86	3.88	6.25	6.53	6.57	6.61	6.68	6.90	7.63	2.33	2.28	-
diacetate (6) Thalmelatine (10)	2.42	2.48	-	3.72	3.79	3.79	3.79	3.88	3.95	6.43	6.52	6.55	6.60	6.60	6.68	8.18	-	-	-
Thalmelatine acetate (11)	2.49	2.52	-	3.71	3.80	3.80	3.76	3.90	3.92	6.45	6.54	6.58	6.61	6.61	6.65	8.19	-	-	2.19
					1. R_{1} 2. R_{1} 3. R_{1} 4. R_{1} 5. R_{1} 6. R_{1} 9. R_{1}	$\begin{aligned} & \mathrm{R}_{2}=\mathrm{CH}_{3} \\ & \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{2}=\mathrm{R}_{3}= \\ & \mathrm{R}_{3}=\mathrm{CH}_{3} \\ & \mathrm{R}_{2}=\mathrm{CH}_{3} \\ & \mathrm{R}_{3}=\mathrm{CH}_{3} \\ & \mathrm{R}_{3}=\mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & , \mathrm{R}_{3}=\mathrm{H} \\ & \mathrm{R}_{2}=\mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \\ & , \mathrm{R}_{2}=\mathrm{H} \\ & , \mathrm{R}_{3}=\mathrm{C} \\ & \mathrm{CO}, \mathrm{R}_{2} \\ & , \mathrm{R}_{2}=\mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{3} \mathrm{CO} \\ & =\mathrm{CH}_{3} \\ & \mathrm{H}_{3} \mathrm{CO} \end{aligned}$								$-\mathrm{CH}_{3}$ 7. R 8. R 10. B 11. R^{2} 12. B 13. R	$1=H, R_{2}$ $\mathrm{H}_{1} \mathrm{CH}_{3} \mathrm{C}$ $\mathrm{H}_{1}=\mathrm{CH}_{3}$, CHCH_{3}, $\mathrm{F}_{2}=\mathrm{H}$ $\mathrm{I}_{1}=\mathrm{C}$	$\begin{gathered} 2=\mathrm{CH}_{3} \\ \mathrm{O}, \mathrm{R}_{2} \\ \mathrm{R}_{2}=\mathrm{H} \\ \mathrm{R}_{2}=\mathrm{C} \\ \mathrm{H}_{3} \mathrm{CO} \end{gathered}$	$=\mathrm{CH}_{3}$ $\mathrm{H}_{3} \mathrm{CO}$

Treatment of pennsylvanamine (2) with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine afforded the diacetate $\mathbf{6}_{2} \mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{10}$, mp 147-148 ${ }^{0}$ (ether). The signal for the aporphine $C-11$ proton was now shifted upfield to $\delta 7.63$, congonant with the presence of a C-1 acetate function. 7 No other aromatic proton had undergone an upfield shift so that the phenolic function on the benzyl ring of pennsylvanamine (2) must be situated at C-5". Diazomethane 0-methylation of 2 yielded an easily separable $1: 1$ mixture of (+)-thalicarpine (3) and (+)-thalictropine (7). 7

The structural assignment for any new phenolic analog of (+)-thalicarpine can now be derived from the combination of $u v$, nmr and mass spectral data for the alkaloid and its acetate. Mass spectroscopy will readily detect the phenol(s) on any of the three large moieties of the alkaloid: aporphine, isoquinoline and benzyl ring. The relevant nmr chemical shifts have been summarized in Table 1, and some of the more useful generalizations for specifically locating the phenolic function(s) have been listed in Table 2.

An interesting recent development has been the isolation in this Laboratory of two other dimeric alkaloids, pennsylpavine (14) and pennsylpavoline (15). These are the firgt aporphinepavine dimers known, and it is tempting to speculate that in the plant pennsylvanine (I) and pennsylvanamine (2) may act as precursors to 14 and 15 , respectively. 10

Table 2. Diagnostic Spectral Features for Phenolic Analogs of Thalicarpine

Phenol at

Observed Data for Parent Phenol

C-1 methoxyl signal at $\delta 3.71$ absent. Strong bathochromic shift in uv spectrum with base. 8
Aporphine
$c-1$
$c-2$
$c-10$

A single methoxyl signal will appear below $\delta 3.85$ assignable to $\mathrm{C}-10.9$

$$
c-7^{\prime}
$$

$$
\approx \delta 3.58, \quad H-8^{\prime} \text { signal at } \approx \delta 6.23 .
$$

C-7' Highfield $\mathrm{C}-$ 7 $^{\prime}$ methoxyl signal at ≈ 83.58 absent. $H-8^{\prime}$ signal at
≈ 86.4 rather than 86.2 .
C-4" Aromatic proton at ≈ 86.80. $\mathrm{H}-8^{\text {' }}$ signal near 86.23 . No distinct bathochromic shift in uv spectrum with base.
C-5" Aromatic proton at ≈ 86.80. $\mathrm{H}-8^{\prime \prime}$ signal near 86.23. Bathochromic shift in uv spectrum with base.

Observed Data for Acetate Derivative
Aporphine $H-11$ signal shifted upfield to \approx 87.60. Acetate methyl signal at $\approx \delta 2.34$.

C-1 methoxyl signal originally near 83.71 will be shifted to slightly higher field. No significant shift of aporphine $\mathrm{H}-11$ signal. 9

Aporphine H-11 signal will be shifted downfield to ≈ 88.30. Acetate methyl signal near 82.20 .9

H-8' signal near $\delta 6.4$ essentially unchanged. Acetate methyl signal at 82.19.

[^0]14. $\mathrm{R}=\mathrm{CH}_{3}$ CH_{3}
15. $R=H$

References

1. This work was supported by grant HL- 12971 from the National Institutes of Health. Nmr. spectra are in CDCl_{3} at 60 MHz . A11 compounds were analyzed by means of high resolution mass spectroscopy. For a recent review on the aporphine-benzylisoquinoline dimers see M. Shamma, "The Isoquinoline Alkaloids", Academic Press, New York (1972), p. 232.
2. S.M. Kupchan and A.I. Liepa, Chem. Commun., 599 (1971); and J.L. Hartwell and B.J. Abbott, Advances in Pharmacology and Chemotherapy, Vol. 7, Academic Press, New York (1969), p. 117.
3. The known alkaloids homoaromoline, 0 -methylrepandine, thalidasine, thalmelatine, hernandaline and thaliglucinone have also been isolated from T. polygamum in this Laboratory.
4. M. Shamma, S.S. Salgar and J.L. Moniot, Tetrahedron Lett., 1859 (1973).
5. L.M. Jackman and S. Sternhell, "Applications of Nuclear Resonance Spectroscopy in Organic Chemistry", 2nd ed., Pergamon Press, Oxford (1969), p. 68.
6. M. Shamma, S.Y. Yao, B.R. Pai and R. Charubala, J. Org. Chem., 36, 3253 (1971).
7. M. Shamma and J.L. Moniot, Tetrahedron Lett., 775 (1973).
8. This spectral pattern is also observed for the related dimer fetidine: M.P. Cava and K. Wakisaka, Tetrahedron Lett. , 2309 (1972).
9. The expected data for the $C-10$ phenol was extrapolated from that observed for monomeric aporphines and for the pakistanine series of aporphine-benzylisoquinoline alkaloids, M. Shama, J.L. Moniot, S.Y. Yao, G.A. Miana and M. Ikram, J. Amer. Chem. Soc., 95, 5742 (1973).
10. The chemistry of 14 and $\underline{15}$ will be described in a separate paper. Conclusive proof regarding the biogenesis of 14 and 15 can come only from in vivo experiments using labeled precursors.

[^0]: Loweat field aromatic proton at ≈ 86.90. Signal at ≈ 86.23 unchanged. Aporphine H-8 signal shifted upfield to ≈ 86.40. One methoxyl signal shifted upfield to $\approx \delta 3.70$.
 Lowest field aromatic proton at $\approx \delta 6.90$. No upfield shift of aromatic proton signals. One methoxyl signal shifted upileld to ≈ 83.70.

